
Pulmonary Hypertension Program 

University of Alberta 

 

Evangelos D. Michelakis, MD, FACC, FAHA 
 

 

 

 

 

 

 

The metabolic basis of PAH 

and cancer 
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Healthy PA endothelium 
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Circulation, 2009 



Michelakis et al, Circulation, 2008 
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Proliferation  
(measured by PCNA) 
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PASMC pro-apoptotic therapies 

• Elastase inhibitors 

• EGF receptor inhibitors 

• Dichloroacetate 

• Simvastatin 

• Anti-survivin 

• Imatinib 

• Sildenafil 

• Cyclosporine 

Untreated PAH Treated PAH 
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The opposing effects of hypoxia in the PA vs RA 

 are in part due to differences in the O2 sensor, i.e.  

the SMC mitochondria  

 

E. Michelakis et al, CircRes, 2002  



1. Pulmonary arterial hypertension is linked to insulin resistance and reversed 

by peroxisome proliferator-activated receptor-gamma activation. 

 Hansmann et al, Circulation, 2007 

 

2. An antiproliferative BMP-2/PPARgamma/apoE axis in human and murine 

SMCs and its role in pulmonary hypertension 

 Hansmann et al, JCI, 2008 

 

 

• Mice with SMC targeted deletion of PPAR  

develop PAH 

 

• PPAR agonists (rosiglitazone, pioglitazone) 

can reverse PAH by activating pro-apoptotic 

and supressing pro-proliferative genes 

PAH: a state of insulin resistance? 



Sense 
(supply of O2 and  demand for fuel) 

execute 

Can match fuel generation (ATP) 

with demand 

Cannot match fuel generation (ATP) 

with demand 
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- Is not he who can best strike a blow in a boxing match  or any     

kind of fighting, best able to ward off a blow? 

- Certainly 

- And he who is most skilled in preventing or escaping from a       

disease is best able to create one? 

 - True 

- And is he the best guard of a camp who is best able to steal a 

march upon  the enemy? 

- Certainly  

- Then he who is a good keeper of everything is also a good thief? 

- That I suppose is to be inferred 

- Then if the just man is good at keeping money he is good at        

stealing it 

-That is implied in the argument 
 

 



Socrates and Polemarchus: 
 

- Is not he who can best strike a blow in a boxing match  or any     

kind of fighting, best able to ward off a blow? 

- Certainly 

- And he who is most skilled in preventing or escaping from a       

disease is best able to create one? 

 - True 

- And is he the best guard of a camp who is best able to steal a 

march upon  the enemy? 

- Certainly  

- Then he who is a good keeper of everything is also a good thief? 

- That I suppose is to be inferred 

- Then if the just man is good at keeping money he is good at        

stealing it 

- That is implied in the argument 
 

The Republic, Plato 



Born October 8 1883, Freiburg 

MD in1911, Heidelberg 

Nobel Prize 1931 

“ For his discovery of the nature and 

mode of action of the respiratory 

enzyme” 

 

Stoffwechsel der Tumoren, 1926 

The Warburg effect: 

“Cancer is caused by abnormal metabolism of the cells: due 

to abnormal mitochondria the cancer cells use glycolysis, 

and not oxidative phosphorylation for energy production, 

even in the absence of hypoxia”. 

Otto Warburg 
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DCA therapy induces apoptosis in the PA wall  

and reverses vascular remodeling 
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DCA reverses established vascular remodeling in rodent PAH 

DCA 



CPT 

Science Transl Med 

Aug 11, 2010 
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Mitochondrial 
membrane potential  
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Cancer Cell, 2007 
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Nogo-/- PASMCs Are Resistant To Hypoxia-Induced ER-Mito Separation 
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Nogo K.O. PASMCs maintain mitochondrial Ca++ and  

Ca++-sensitive enzymes in hypoxia 
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Nogo-/- PASMC are resistant to hypoxia induced 

mitochondrial hyperpolarization and decreased mitochondrial ROS 
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Nogo-/- mice are resistant to chronic-hypoxia PHT 
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Nogo Expression Increases in Human PAH 
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Sebastien Bonnet 

Sean McMurtry 

Ken Petruk 

Gopi Sutendra 

Peter Dromparis 

Jayan Nagendran 

Linda Webster 

Ballarina II, Joan Miro, 1925 



RV LV 

The RV and the LV 

are embryologically 

different 

 

The molecular and 

metabolic profile of 

the normal RV is 

different compared 

to RVH 

Zaffran et al, Circ Res 2004. 



Nagendran et al, JTCS, 2008 



FDG-18/PET  

IMAGING 

baseline RVH-PHT 

RV RV LV LV 

baseline RVH-PHT 
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Nagendran et al, JTCS, 2008 

DCA: a positive RVH inotrope 



Flolan decreases RV Glu uptake 

Increased lung glucose uptake in iPAH patients 

RV 

LV 

RV 

LV 

Increased RV Glu  

uptake in iPAH  

Oikawa et al, JACC 2005 

Xu et al, PNAS, 2007 
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