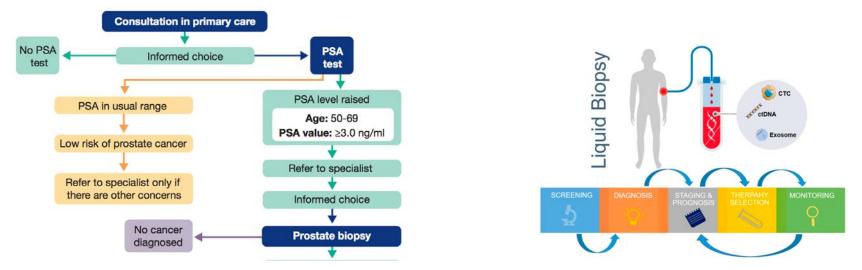
Detection of candidate biomarkers of prostate cancer progression in serum: a depletion-free 3D LC/MS quantitative proteomics pilot study

S. E. T. Larkin et al, S. D. Garbis and P. A. Townsend British Journal of Cancer (2016) 115, 1078–1086 |doi: 10.1038/bjc.2016.291

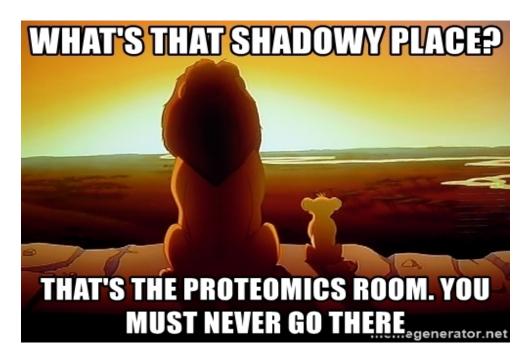
> Nina Fanaropoulou Maria Peleli Yorgos Polychronidis

Introduction – Prostate cancer (Pca) screening

- "Prostate cancer has been described as the par excellence example of overdiagnosis... "
- "The test's popularity has led to a hugely expensive public health disaster. It's an issue I am painfully familiar with – I discovered PSA in 1970...."



Chapman S, Barratt A, Stockler M. Let sleeping dogs lie? What men should know before getting tested for prostate cancer. Sydney: Sydney University Press, 2010: p25 Ablin RJ. The great prostate mistake. New York Times, 10 March 2010.


Introduction – Prostate cancer (Pca) screening

- PSA levels <1.0 ng/ml virtually rule out a prostate cancer (for a patient< 50yrs)
- 1068 men had to be screened and 48 men had to have curative treatment in order to save one man's life

Holmström et al, BMJ. 2009; 339: b3537, Schröder et al, N Engl J Med 2009; 360:1320-1328 Prostate Cancer Risk Management Programme (PCRMP) sheet – courtesy of the NHS, Micromachines 2018, 9(8), 397

What else is there to utilize and how?

Hypothesis: The 3D-iTRAQ-LC-MS Methodology (Garbis et al, 2008, Al-Dhagri et al, 2014) protocol is selective, sensitive and specific enough to reveal novel and clinically relevant biomarkers that can stage Pca progression.

PoC

Materials and Methods Which Patient Cohorts/Samples?

Group	PSA Value	Number of pts
Pca Null	<1 ng/ml	20
Putative Benign Disease (BPH, prostatitis, PIN, inflammation, atrophy)	4.7–12 ng/ml	15
T1-T2 stage Pca	3.9–4.8 ng/ml	20
T3-T4 stage Pca	6.7–17.65 ng/ml	20

COHORT 1 Discovery Experiment (MS)

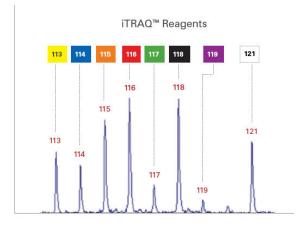
Prof. Clarke ProMPT Study

Prof. Pandha SUN Study

Group	PSA Value	Number of pts
Pca Null	Same	20
Putative Benign Disease (BPH, prostatitis, PIN, inflammation, atrophy)	Same	20
T1-T2 stage Pca	0.7–31 ng/ml	20
T3-T4 stage Pca	0.5–1400 ng/ml	20

COHORT 2 Validation Experiment (ELISA)

LC-MS

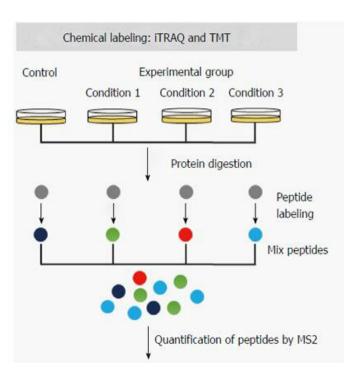


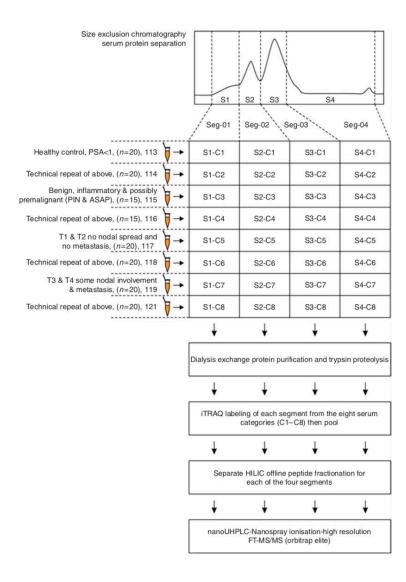
Depletion Strategies

Eliminate high abundance proteins (Albumin, Igs) which mask low abundance proteins but Inevitable loss -sweep away (eg exosomal, proteins bound to albumin)

VS

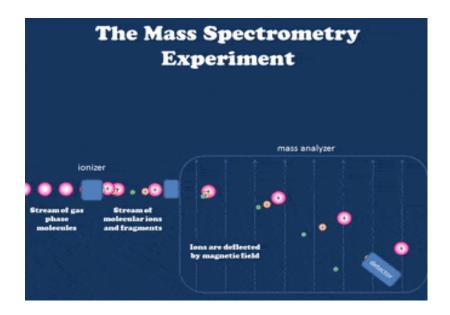
Determines mass-to-charge ratio, converts into molecular mass

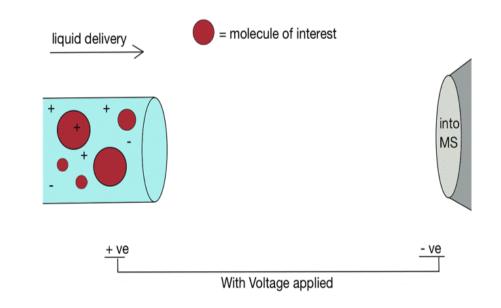



Depletion-FREE Strategy

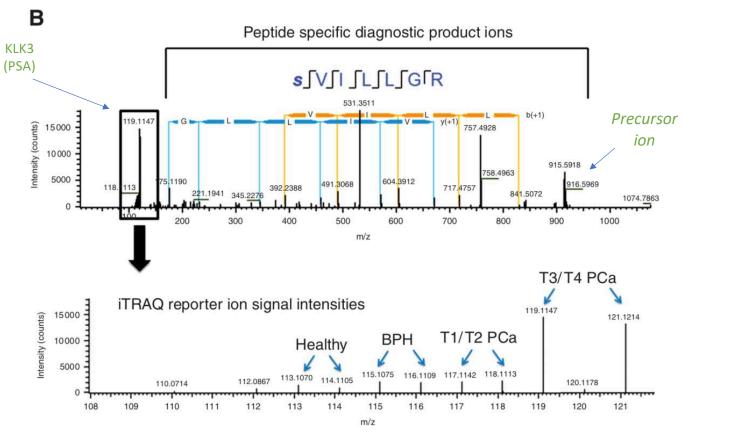
Preservation through iTRAQ Labeling and SuPrE-SEC

How to best identify the proteome?

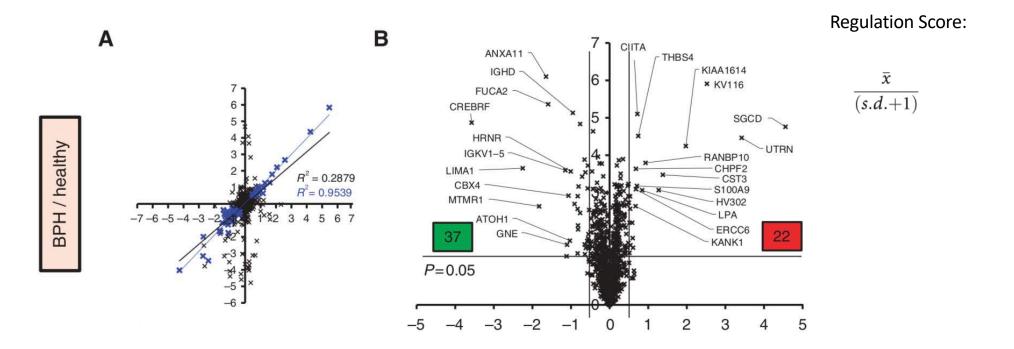

- Solubilize fresh neat serum (6M Gua/10% MeOH)
- SEC protein separation/purification
- \circ Trypsin digestion \rightarrow Peptides
- o iTRAQ labeling
- Pooling
- Offline peptide fractionation with HILIC and on-line RP LC-MS
- Statistical Analysis
- Literature and Network Analysis-Bioinformatics (STRING Database)



S1: High MW ProteomeS2: Ig ProteomeS3: AlbuminS4: Low MW Proteome


Mass Spectrometry (MS)

Qualitative Data Quantitave Data


Results-What did the MS output look like?

Qualitative Spectrum Analysis (peptide level)

Quantitative Spectrum Analysis (protein level)

Results-Statistical Analysis

	BPH/				T1-T2/			T3-T4/				
	Healthy				Healthy			Healthy				
Protein	115/113	115/114	116/113	116/114	117/113	117/114	118/113	118/114	19/1131	119/114	121/113	121/114
TMCO6												
TSR1												
VWA5B2												
CCNB2												
UTRN												
LAMB1												
DNAJC8												
KLK3												
SAA2												
GRID1												
MED30												
RANBP10												
SRC												
CAPN9												
IGHE												
KV120												
FGG												
KV107												
ZNF638												
ZNF615												
ERCC6												
LV603												
TRPV6												
MADD												
MYO15A												
XPO4												
MTMR1					-					1		
RBM41												
RAD18												
USP25												
DHX29												
CHPF2												
C3orf30												
LPA												
A6NDD8												
SGCD												
KV116												
KIAA1614												
CST3												
HV302												
111002												

 Heat Map of top 40 overabundant proteins(P<0.05) sorted by regulation score, across BPH, T1–T2 and T3–T4 samples relative to healthy serum.

7 proteins shortlisted to undergo
ELISA validation

TSR1
VWA5B2
KLK3
SAA2
SRC
SGCD
CST3

Results-Summary Workflow Map

1. Discovery Experiment

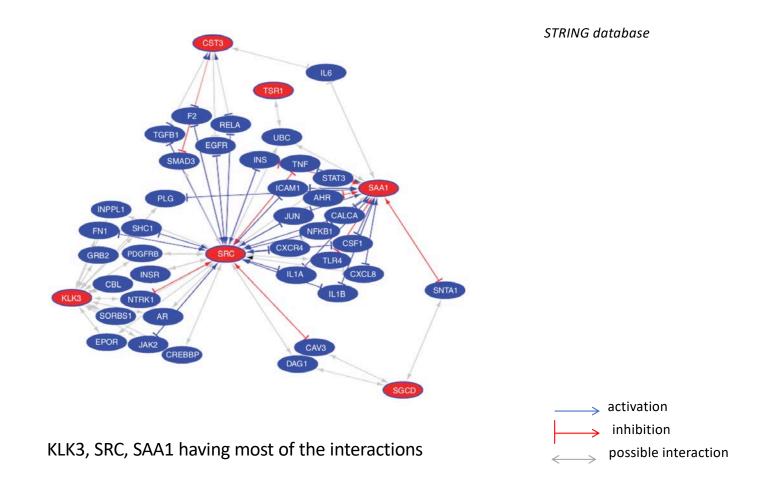
Discovery samples: Prof Pandah SUN study, REC reference 08/H1306/115. Categorised as follows: i) Prostate cancer null (n=20) ii) Putative benign disease (n=15) iii) T1-T2 stage prostate cancer (n=20) iv) T3-T4 prostate cancer (n=20) Ranking by regulation score and selection of top 40 proteins.

2. Validation Experiment

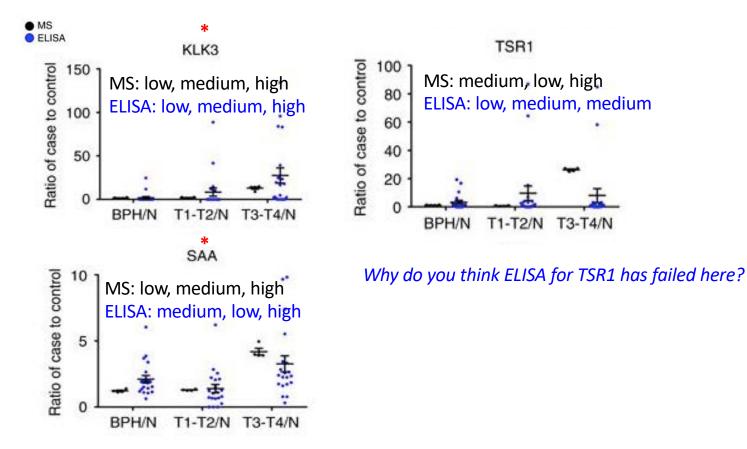
Prof Clarke ProMPT study, REC reference MREC/01/4/061. Categorised as follows: i) Prostate cancer null (n=20) ii) Putative benign disease (n=20) iii) T1-T2 stage prostate cancer (n=20) iv) T3-T4 prostate cancer (n=20)

Validation samples:

Validation panel selection based on differential expression between disease groups and commercially availably kits. **7 proteins**.

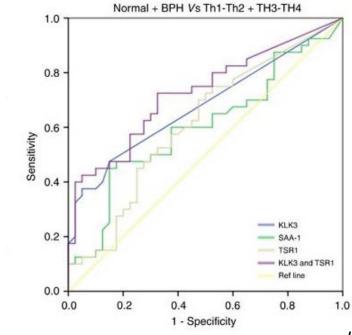

Validation of protein panel by ELISA **2 proteins.**

How much different is the expression profile at the 3 different stages?


Pre	otein	log2		log2 benign/control log2 T1-T2/control			log2 T3-T4/control						
De	lta-sarcoglycan	5.329	5.457	5.643	5.837	1.159	1.385	0.232	0.377	-0.021	0.104	0.699	0.846
< Pre	e-rRNA-processing protein TSR1 homologue	0.334	0.452	0	0.078	-0.058	0.014	-1.11	-1.012	4.555	4.676	4.642	4.77
Ka	likrein 3	0.498	1.174	0.261	0.988	0.633	1.32	0.596	1.295	3.204	3.892	3.161	3.818
vo	n Willebrand factor A domain-containing protein 5B2	-0.312	-0.026	-0.682	-0.435	-0.253	-0.012	-1.836	-1.569	3.991	4.28	4.096	4.393
< Se	rum amyloid A protein	0.471	0.288	0.181	0.209	0.379	0.449	0.325	0.327	2.046	1.992	2.309	1.965
Pro	oto-oncogene tyrosine-protein kinase Src	-0.633	-0.879	-0.151	-0.437	1.118	0.827	1.366	1.1	1.506	1.263	2.044	1.809
Cys	statin-C	1.476	1.749	1.461	1.785	0.172	0.456	0.097	0.394	-0.345	-0.06	-0.405	-0.15

KLK3: Benign average=0,73, T1-2 average=0,961, T3-4 average=3,519 SAA: Benign average=0,287, T1-2 average=0,37, T3-4 average=2,078 TSR1: Benign average=0,216 T1-2 average=-0,51, T3-4 average=4,66

What is the interactome of the selected markers?



Expression profile of the selected markers in ELISA

2 proteins KLK3, SAA showed different expression profile at the different Prostate Cancer stages

Sensitivity & specificity analysis

Protein	AUC	95% Confidence interval	Asymptotic sig
KLK3	0.679	0.561-0.798	P = 0.006
SAA-1	0.602	0.476-0.728	P = 0.117
TSR1	0.613	0.489-0.737	P = 0.081
KLK3 TSR1	0.727	0.591-0.821	P < 0.0005

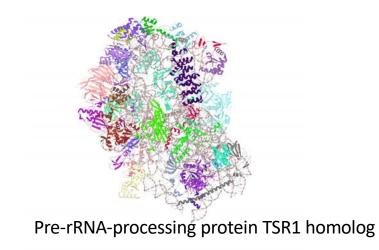
KLK3+SAA-1 might be another promising combination

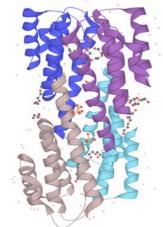
Literature review

Marker	Total publications	PCa publications	PCa publications enrichment <i>P-</i> value
SGCD	323	3	0.60
TSR1	112	2	0.29
VWA5B2	3	0	1.00
CST3	4431	60	5.85E-3
SRC	7805	618	5.28E-342
SAA1	3767	58	4.21E-4
KLK3	44 017	19 295	1.75E-25 391

· · · · · - -

	Marker	PCa biomarker publications	PCa biomarker publications enrichment <i>P</i> -value
	SGCD	2	0.90
\langle	TSR1	0	1.00
	VWA5B2	0	1.00
	CST3	50	1.00
	SRC	305	1.19E-1201
\langle	SAA1	48	1.00
	KLK3	4908	1.92E-3105


... . .


Limitations (proof of concept paper)

- Small sample size
- Protein inference issue
- PCa heterogeneity -> low validation rate
- ELISA validation: intact interaction between an epitope and antigen is a must
- Literature review Vs systematic review

Conclusions

- PSA screening remains controversial and limited however still the gold standard as a predictive marker for follow-up
- Serum proteomics discovery pipeline is feasible in prostate cancer
- SAA and TSR1 can add to the predictability of KLK3 (KLK3: 0.679 TSR1 + KLK3: 0.727)

Serum amyloid A-1 protein

Acknowledgements

Prof. S. Garbis

Prof. E. Diamandis

WHBA Summer School Organizers

(esp. Penny Georgakopoulou and Prof. Diomedes Logothetis)

