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SUMMARY

Chromatin loops juxtapose distal enhancers with
active promoters, but their molecular architecture
and relationship with transcription remain unclear.
In erythroid cells, the locus control region (LCR) and
b-globin promoter form a chromatin loop that
requires transcription factor GATA1 and the associ-
ated molecule Ldb1. We employed artificial zinc
fingers (ZF) to tether Ldb1 to the b-globin promoter
in GATA1 null erythroblasts, in which the b-globin
locus is relaxed and inactive. Remarkably, targeting
Ldb1 or only its self-association domain to the
b-globin promoter substantially activated b-globin
transcription in the absence of GATA1. Promoter-
tethered Ldb1 interacted with endogenous Ldb1
complexes at the LCR to form a chromatin loop,
causing recruitment and phosphorylation of RNA
polymerase II. ZF-Ldb1 proteins were inactive at
alleles lacking the LCR, demonstrating that their
activities depend on long-range interactions. Our
findings establish Ldb1 as a critical effector of
GATA1-mediated loop formation and indicate that
chromatin loopingcausally underlies gene regulation.

INTRODUCTION

Gene activity is controlled by a combination of proximal and

distal regulatory elements that can be separated by up to

hundreds of kilobases. Long-standing questions include how

these elements interact functionally to regulate gene expression,

how gene specificity is achieved, and how unwanted effects on

nearby irrelevant genes are avoided. The use of chromosome

conformation capture (3C) and its derivatives has revealed that

distant chromosomal elements can be juxtaposed to form chro-

matin loops, thus providing one mechanism of long-range
enhancer function (Cullen et al., 1993; Dekker et al., 2002). Chro-

matin looping has been discovered at numerous gene loci and

reflects a widespread organizing principle of the chromatin fiber

(for review, see Dean, 2011; Kadauke and Blobel, 2009; Miele

and Dekker, 2008; Schoenfelder et al., 2010; Sexton et al.,

2009). Although looping can occur at genes prior to their full

activation, the onset of transcription is tightly associated with

additional looped interactions (Palstra et al., 2003; Spilianakis

and Flavell, 2004; Vernimmen et al., 2007). However, based

on studies using pharmacological inhibitors of transcription

elongation, it has become clear that ongoing transcription is

dispensable for sustaining preformed chromatin loops (Mitchell

and Fraser, 2008; Palstra et al., 2008).Moreover, chromatin loop-

ing is not limited to active genes. For example, upon repression of

the Kit gene, loss of an enhancer-promoter loop is accompanied

by de novo loop formationwithin the gene body (Jing et al., 2008).

These studies indicate that chromatin loops are highly dynamic

and occur at active and repressed genes but leave open the

question as to whether these long-range interactions are a cause

or consequence of dynamic changes in transcription initiation.

The molecular mechanisms that establish and maintain chro-

matin loops remain incompletely understood. Fundamental

insights into these issues arose from studies of the mammalian

b-globin locus, which is among the first gene clusters at which

long-range chromosomal interactions between a powerful distal

enhancer, the locus control region (LCR), and the target b-globin

promoters were described (Carter et al., 2002; Tolhuis et al.,

2002). Mechanistic studies defined gene-specific transcription

factors that establish LCR-b-globin interactions, including the

hematopoietic-restricted factors GATA1 and its cofactor FOG1

(Vakoc et al., 2005), KLF1 (also known as EKLF) (Drissen et al.,

2004), and the more broadly expressed protein Ldb1 (Song

et al., 2007). Functional disruption of any of these factors was

associated with reduced LCR-b-globin interactions and dimin-

ished b-globin transcription. However, physical interactions

among all of these proteins have been reported (Cantor and

Orkin, 2002), making it difficult to distinguish whether they func-

tion in linear or parallel pathways. Moreover, whether the loss of
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looping underlies the loss of transcription or vice versa remains

an open question in these studies.

GATA1 is a DNA-binding protein essential for normal

erythroid differentiation and b-globin gene expression (Evans

and Felsenfeld, 1989; Pevny et al., 1991; Tsai et al., 1989).

GATA elements are present at the b-globin promoter and LCR,

suggesting that GATA1 and its cofactors are involved in the

juxtaposition of these sites. Our understanding of the mecha-

nisms of GATA1 function has been greatly aided by the use of

the GATA1 null proerythroblast cell line G1E. Introduction of an

estradiol-inducible version of GATA1 (GATA1-ER) into these

cells (G1E-ER4) leads to an estradiol-dependent activation of

b-globin gene transcription with concomitant LCR-b-globin

looping (Vakoc et al., 2005). The transcription cofactor Ldb1

(also called NLI) does not bind DNA directly but is recruited to

E box elements or GATA elements via a multicomponent

complex that includes TAL1, LMO2, E2A, and GATA1. GATA1

and Ldb1 display a highly overlapping genomic occupancy

pattern, but notably, Ldb1 association strongly favors sites at

which GATA1 functions as a transcriptional activator, such as

the b-globin locus (Cheng et al., 2009; Kassouf et al., 2010;

Soler et al., 2010; Tripic et al., 2009; Wu et al., 2011). Several

observations suggest that Ldb1 might be a critical effector of

GATA1’s looping function. First, knockdown of Ldb1 impairs

LCR-b-globin looping (Song et al., 2007). Second, theDrosophila

homolog of Ldb1, Chip, is required for long-range enhancer

action (Morcillo et al., 1997). Third, like GATA1, Ldb1 co-

occupies the b-globin promoter and LCR and might therefore

function by physically linking the two (Song et al., 2007; Tripic

et al., 2009). Fourth, Ldb1 can form homodimers and even

higher-order oligomers (Cross et al., 2010; Jurata and Gill,

1997), which might underlie its role in loop formation.

Prior studies in prokaryotes (for review, see Marenduzzo et al.,

2007), as well as studies in eukaryotic cells using plasmid

constructs, have succeeded in influencing gene expression

through forced looping among regulatory elements (Ameres

et al., 2005; Mahmoudi et al., 2002; Nolis et al., 2009; Petra-

scheck et al., 2005). However, the use of plasmids with altered

chromatin configuration and the relatively short genomic

distances might limit inferences with regard to long-range chro-

matin interactions at native gene loci.

Here, we devised a strategy to modulate chromatin looping at

an endogenous locus in its native environment. This enabled us

to address whether forced chromatin looping can activate

transcription, to examine the hierarchy of transcriptional regula-

tors in chromatin looping, and to define the ensuing molecular

and functional consequences. For our studies, we used G1E

erythroid cells because they lack transcription factor GATA1

and thus fail to establish an LCR-b-globin loop and transcribe

b-globin. Ldb1 recruitment to the b-globin promoter is entirely

GATA1 dependent, whereas substantial amounts of the TAL1/

Ldb1 complex remain associated with LCR in the absence of

GATA1 (Figure 1A and Figure S1 available online) (Tripic et al.,

2009). Therefore, Ldb1 recruitment by GATA1 to the promoter

might represent a critical rate-limiting step in juxtaposing the

LCR with the promoter to form a loop required for transcription

initiation (Figure 1A). We tested this hypothesis by using a ZF tar-

geting approach to tether Ldb1 to the b-globin promoter in G1E
1234 Cell 149, 1233–1244, June 8, 2012 ª2012 Elsevier Inc.
cells (Figure 1A). Notably, promoter-bound ZF-Ldb1 was

capable of inducing a chromatin loop in G1E cells to an extent

similar to that achieved by GATA1 restoration. ZF-Ldb1

constructs completely restored RNA polymerase II (Pol II)

recruitment and Pol II serine 5 phosphorylation (Ser5ph) and

partially rescued b-globin transcription. Genetic experiments in

erythroid cells lacking the LCR confirmed that the ZF-Ldb1

proteins functioned via a long-range looping mechanism. These

results reveal that forced juxtaposition of regulatory regions can

activate transcription and establish Ldb1 as a critical rate-

limiting effector of GATA1 during chromatin looping.

RESULTS

ZF-Mediated Targeting of Ldb1 to the Endogenous
b-Globin Locus
As a strategy to tether potential looping factors to the endoge-

nous b-globin locus, we chose artificial ZF proteins because

they have been used successfully to target preselected genomic

sites in vivo (for review, see Klug, 2010). ZFs were synthesized to

target the b-major globin promoter (P-ZF) and DNase1 hyper-

sensitive site 2 (HS2) of the LCR (L-ZF) (Figure 1B), as these sites

were previously found to be in close physical proximity (Carter

et al., 2002; Tolhuis et al., 2002). Each aritificial ZF protein con-

tained six ZF domains that were linked in tandem to target 18

base pairs of genomic sequence (for review, see Klug, 2010).

Target sequences were chosen within the DNase I hypersensi-

tive regions to facilitate access to the ZFs but avoid interference

with known transcription factor binding sites (Figure S1B).

Binding of the ZFs to their designated DNA sequences was char-

acterized by using a previously described ELISA-based assay

(data not shown) (Bartsevich et al., 2003). ZFs were fused to

a hemagglutinin (HA) tag and a nuclear localization sequence

(NLS), and their chromatin binding profiles were examined by

chromatin immunoprecipitation (ChIP) following introduction

into G1E cells (Figures S1C and S1D; data not shown). ZFs

with suitable binding properties were fused to Ldb1 and intro-

duced into a retroviral vector containing an internal ribosomal

entry site (IRES)-green fluorescent protein (GFP) or IRES-yellow

fluorescent protein (YFP) cassette. Upon infection of G1E cells,

populations of GFP/YFP-positive cells were purified by fluores-

cence-activated cell sorting (FACS) and subjected to anti-HA

ChIP. We identified a P-ZF that strongly bound the b-globin

promoter in G1E cells (Figure S1C). Fusion of Ldb1 with P-ZF

(P-Ldb1) retained strong binding to the b-major globin promoter

but was also detectable at low levels at multiple HSs of the LCR

(Figure 1). In the absence of the Ldb1 moiety, this ZF bound to

these LCR sites with lower efficiency (Figure S1C), indicating

that the association of P-Ldb1 with the LCR is in large part due

to its interaction with endogenous Ldb1 complexes at the LCR

(Tripic et al., 2009). In addition, L-Ldb1 (L-ZF fused to Ldb1)

was found to bind to HS2, but not to the b-globin promoter (Fig-

ure 1C), which is consistent with the lack of endogenous Ldb1

complexes in the absence of GATA1 (Figure S1A). Finally, cells

coexpressing L-Ldb1 and P-Ldb1 produced comparable ChIP

signals at the LCR and b-major promoter (Figure 1D).

It is noteworthy that ChIP results assessing several ZF proteins

in erythroblasts or fibroblasts (data not shown) revealed that the
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Figure 1. ZF-Mediated Targeting of Ldb1 to the b-Globin Locus

(A) Experimental model. (Top) Wild-type scenario in which GATA1 and the TAL1 complex recruit Ldb1 to promote chromatin looping. (Middle) Lack of GATA1

leads to loss of Ldb1 at the promoter, impaired looping, and reduced transcriptional activation. (Bottom) ZF-mediated Ldb1 tethering to the b-globin promoter is

examined for its ability to restore looping and transcription activation.

(B) (Top) P-ZF and L-ZF target the b-major promoter (red triangle) and HS2 of the LCR (red oval), respectively.

(B–D) Anti-HA ChIP in cells expressing P-Ldb1 (B), L-Ldb1 (C), and L-Ldb1+P-Ldb1 (D). L-Ldb1 binds selectively to HS2 of the LCR. Of note, P-Ldb1 binds to the

b-major (bmaj) promoter but additionally associates with HS 1, 2, and 3 of the LCR, but not to other regions, including the εy, bh1, and bmin genes, an intervening

region (IVR16), or an inactive gene (CD4).

n R 3. Error bars denote SD. See also Figure S1.
binding properties of ZFs to naked DNA sequences in vitro do

not fully predict their binding efficiency in vivo. Nevertheless,

we were able to identify a ZF pair capable of targeting Ldb1 to

the b-globin locus.

Tethering Ldb1 to the b-Globin Locus Activates
Transcription in the Absence of GATA1
LCR promoter looping is required for high-level globin gene

expression throughout erythroid development. Therefore, we

examined whether promoter- and/or LCR-tethered Ldb1
induces b-globin transcription in G1E cells. Because G1E cells

lack GATA1, the b-globin promoter is devoid of Ldb1, whereas

the LCR retains significant amounts of Ldb1 mediated by the

TAL1 complex bound to E box elements (Figures 1A and S1A).

Remarkably, expression of P-Ldb1 activated b-globin transcrip-

tion over 1,000-fold (Figure 2A), amounting to �20% of that

achieved upon restoration of GATA1 (G1E-ER4 cells) (Figure 2B).

L-Ldb1 alone or ZFs without the Ldb1 moiety displayed little

activity (Figure 2A). Coexpression of P-Ldb1 and L-Ldb1 failed

to further activate b-globin expression compared to P-Ldb1 by
Cell 149, 1233–1244, June 8, 2012 ª2012 Elsevier Inc. 1235
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Figure 2. Activation of b-Globin Transcription in GATA1 Null Cells by Tethered Ldb1 or Its SA Domain

(A) b-major globin mRNA levels as measured by RT-qPCR with primer pairs for exon 2 in G1E cells and derivatives expressing indicated ZF and ZF-Ldb1

constructs.

(B) Data in (A) were replotted next to those obtained from induced G1E-ER4 cells (G1E+GATA1). Note that b-major expression achieved by P-Ldb1 or

L-Ldb1+P-Ldb1 amounts to �20% of that induced by GATA1.

(C) Relative expression of indicated erythroid genes as determined by RT-qPCR.

(D) (Top) Schematic of Ldb1. SA, self-association domain; LID, LIM interaction domain. (Bottom) b-major mRNA levels in G1E cells expressing indicated ZF fused

to the SA domain of Ldb1. Transcript levels were normalized to b-actin.

n R 3. Error bars denote SE. See also Figure S2.
itself (Figure 2A). Because high-level b-globin expression

requires the LCR (Bender et al., 2000), these results suggest

that promoter-bound Ldb1 is sufficient to promote long-range

contacts with the LCR, presumably via endogenous Ldb1, to

activate transcription (see below). Measurements of b-globin

expression were confirmed with multiple primer pairs directed

against the b-globin transcript (Figure S2A). Moreover, the

effects of ZF-Ldb1 expression were gene specific and not

simply a consequence of a general differentiation induction

because the expression of several additional GATA1-activated

(Klf1, Eraf, and bh1) and repressed (Gata2 and Kit) genes was

unchanged (Figure 2C; data not shown). The potent activation

by ZF-Ldb1 fusion proteins of b-globin transcription is particu-

larly remarkable because it occurred in the absence of GATA1,

which is essential for b-globin transcription.

The substantial b-globin transcriptional activation by ZF-Ldb1

strongly implicates anLCR loopingmechanismbecause b-globin

transcription is reduced to �1% of normal when the LCR is

deleted (Bender et al., 2000). Moreover, Ldb1 occupancy at the

b-globin promoter is normal in the absence of the LCR (Song
1236 Cell 149, 1233–1244, June 8, 2012 ª2012 Elsevier Inc.
et al., 2010), indicating that promoter-bound Ldb1 alone is insuf-

ficient for b-globin transcription without the LCR. Although

b-globin activation by ZF-Ldb1 fusion proteins was substantial,

their effects did not match those of GATA1, which is consistent

with GATA1 exerting functions in addition to chromatin looping.

Tethering of the Ldb1 Self-Association Domain
Is Sufficient for b-Globin Activation
Ldb1 contains an N-terminal self-association (SA) domain that

mediates the assembly of higher-order molecular complexes

and might account for its looping function (Cross et al., 2010;

Xu et al., 2003). Ldb1 also contains a C-terminal LIM interaction

domain (LID) that confers binding to LMO2 and its associated

GATA1/TAL1/E2A multiprotein complex. To examine whether

the SA domain is sufficient for transcription activation, it was

fused with L-ZF and P-ZF and introduced into G1E cells. P-SA

and L-SA showed very similar genomic binding profiles as the

full-length Ldb1 fusion constructs, such that L-SA occupied

HS2, whereas P-SA bound the b-major globin promoter and,

additionally, the LCR (Figure S2B). Remarkably, expression of
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Figure 3. Chromatin Looping by the Tethered Ldb1 SA Domain

(A–D) 3C assay measuring locus-wide crosslinking frequencies in G1E cells

(blue), induced G1E-ER4 (G1E+GATA1) (A, red), or G1E cells containing P-SA
P-SA alone or coexpression of L-SA and P-SA activated b-globin

gene transcription to virtually the same level as did the full-length

Ldb1 fusion proteins (Figures 2D and S2C). Again, the effects of

ZF-SA were gene specific and did not globally alter erythroid

gene expression (Figure S2C). These results suggest that the

Ldb1 self-association domain is sufficient to induce b-globin

transcription, further supporting the idea that forced juxtaposi-

tion between the LCR and b-globin promoter underlies transcrip-

tional activation.

We also considered the possibility that the remaining portions

of Ldb1 might participate in chromatin looping by nucleating

higher-order protein complexes. To this end, we generated

a ZF-Ldb1 fusion protein lacking the SA domain (P-DSA) but

left the nuclear localization sequence and LID domain intact.

P-DSA was capable of inducing b-globin transcription, albeit to

a significantly lower degree than P-SA (Figure S2D). Activation

never exceeded 50% of that observed with P-SA, even under

the most optimal conditions and expression levels (Figure S2D;

data not shown). This supports the idea that the SA domain is

most efficient in nucleating higher-order complexes required

for looping. Nevertheless, these results are also consistent with

the possibility that Ldb1 can engage its partner proteins via

distinct domains to produce chromatin loops.

Tethering of the Ldb1 Self-Association Domain Induces
LCR-Promoter Looping
The strong induction of b-globin transcription by ZF-Ldb1 or ZF-

SA implicates an involvement of the LCR and, hence, chromatin

looping, because in the absence of the LCR, b-globin transcrip-

tion is very low (Bender et al., 2000). Therefore, we examined by

3C assay whether expression of ZF-SA constructs juxtaposed

the LCR with the b-globin gene to form a chromatin loop (Fig-

ure S3). Using HS2 as the anchor region, we found that, in

parental G1E cells, the 3C signals generally declined with

increasing distance (Figure 3A), which is consistent with our

previous observations (Vakoc et al., 2005). In particular, there

is no interaction between HS2 and the b-globin genes. Upon

GATA1 restoration, the relative proximity of HS2, with two adja-

cent fragments comprising the b-major globin gene, significantly

increased (Figure 3A). HS2 interactionswith intervening or down-

stream segments remained low, indicative of a GATA1-depen-

dent HS2-b-globin chromatin loop (Vakoc et al., 2005). We next

determined the chromatin conformation of the b-globin locus in

G1E cells expressing ZF-SA proteins. Strikingly, expression of

P-SA alone, but not L-SA, produced a strong HS2-b-globin chro-

matin loop, recapitulating the chromatin conformation induced

by GATA1 (Figures 3B and 3C). Thus, recruitment of the SA

domain to the b-globin promoter is sufficient for juxtaposition

with the LCR, likely via interaction with endogenous LCR-bound

Ldb1 (Figures S1A and S2B, model in Figure 1A). Coexpression

of P-SA andL-SA triggered juxtaposition of HS2with the b-globin
(B, red), L-SA (C, red), or L-SA+P-SA (D, red). The murine b-globin locus is

depicted on top of each graph. The x axis indicates distances (kb) from the εy

gene, which represents zero. Black bar denotes the HS2-containing BglII

fragment serving as anchor. Gray bars denote analyzed BglII fragments. OR,

olfactory receptor genes.

(A, B, and D) n = 3. (C) n = 2. Error bars indicate SEM. See also Figure S3.
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Figure 4. Restoration of Pol II Recruitment and Ser5ph by ZF-SA

(A) Location of amplicons (black bars). Prom, promoter; numbers indicate

exons.

(B and C) ChIP with antibodies against total Pol II (B) or Ser5ph (C) using G1E

cells, or G1E cells expressing GATA1 or P-SA. Note that, whereas total Pol II

binding at the promoter matched that induced by GATA1, Pol II levels in the

body of the gene were only partially restored in P-SA cells, which is consistent

with incomplete rescue of transcriptional elongation (compare with Figure 2B).

n = 3. Error bars denote SD. See also Figure S4.
genewith a similar efficiency as the P-SAalone (Figure 3D). Given

the lower levels of occupancy of P-SA at HS2 in comparison to

L-SA, it was surprising to find that P-SA was as active as the

combination of L-SA plus P-SA or GATA1. It is possible that

the ChIP signal for P-SA at the LCR underrepresents the

amounts of P-SA because proteins indirectly associated with

DNA are not crosslinked as efficiently. Moreover, P-SA associa-

tion with multiple regions in the LCR via endogenous Ldb1 likely

adds to its ability to promote loop formation. Nevertheless,

forced LCR-b-globin chromatin looping correlated well with acti-

vation of b-globin transcription.

In concert, these results show that tethering the SA domain

of Ldb1 to the b-globin promoter is sufficient to produce an

LCR-b-globin chromatin loop that is similar, if not identical, to

that generated by GATA1. This strongly suggests that Ldb1 is

an essential rate-limiting effector of GATA1 during chromatin

looping. More generally, juxtaposition of an LCRwith a promoter

causes strong gene activation.

ZF-SA Expression Produces LCR-Dependent Functions
Two of the key functions of the b-globin LCR are the recruitment

of Pol II to the b-globin promoter and the stimulation of Pol II
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phosphorylation at serine 5 of its C-terminal domain, a modifica-

tion associated with early transcription elongation (Sawado

et al., 2003). Hence, if ZF-SA proteins activate b-globin transcrip-

tion by promoting LCR-b-globin contacts, they are expected to

stimulate Pol II recruitment and Ser5ph. To examine the extent

to which ZF-SA fusion proteins restored LCR-dependent func-

tions, we performed ChIP with antibodies against Pol II Ser5ph

or with antibodies that react with Pol II regardless of its phos-

phorylation state. Notably, expression of P-SA triggered Pol II

recruitment to the b-globin promoter with an efficiency similar

to that achieved by GATA1 expression (Figures 4A and 4B). In

contrast, Pol II levels in the body of the gene amounted to

�25%–30% of those found in GATA1-expressing cells, corre-

sponding well with the levels of b-globin mRNA production (Fig-

ure 2B). This is consistent with reduced recruitment of the elon-

gation complex P-TEFb to the b-globin promoter and the body of

the gene when compared to GATA1-expressing cells (as

measured by anti-CDK9 ChIP; Figure S4A). The amounts of Pol

II Ser5ph found at the b-globin gene in P-SA-expressing cells

were indistinguishable from those observed in GATA1-express-

ing cells (Figure 4C). As an additional measure of transcription,

we determined the level of histone H3 lysine 4 trimethylation

(H3K4me3) and found that P-SA restored this mark to levels

equal to that produced by GATA1 (Figure S4B). Similar results

were obtained in cells coexpressing P-SA and L-SA (data not

shown). These results demonstrate that two functions of the

LCR, i.e., Pol II recruitment to the b-globin promoter and Pol II

Ser5ph, were completely restored by expression of P-SA,

lending additional support to the idea that juxtaposition of the

LCR with the b-globin promoter underlies the activity of P-SA.

The failure to fully restore transcription elongation can be ex-

plained by the lack of GATA1 and its cofactors that exert addi-

tional looping-independent functions, possibly including the

recruitment and activation of P-TEFb complex (Bottardi et al.,

2011; Elagib et al., 2008; see Discussion).

Precocious Induction of b-Globin Transcription
by ZF-SA Fusion Proteins in Primary Erythroblasts
We examined whether ZF fusion proteins function in primary

erythroid progenitor cells to activate b-globin expression. The

maturation stage of primary erythroid progenitor cells from

E13.5 wild-type (WT) fetal livers was monitored by flow cytome-

try measuring the expression of the cell surface markers Ter119

and CD71 (Zhang et al., 2003). Cells progress through the R1,

R2, R3, and R4 stages of maturation (Figure 5A) and ultimately

produce abundant amounts of b-globin (Figure S5A). For

the expression of ZF-SA proteins, we purified Ter119� and

CD71�/low cells (R1 population in Figure 5A) representing

early precursor cells. At this stage, the b-globin genes are not

yet highly active, but cells express low levels of essential

regulatory factors, including GATA1 and KLF1 (Figure S5B).

Following infection with retrovirus-expressing ZF-SA fusion

proteins, cells were cultured in defined medium containing cyto-

kines IL-3, IL-6, and SCF to preserve the cells in the precursor

state. Remarkably, expression of P-SA only or P-SA/L-SA,

but not L-SA alone, precociously activated b-globin transcription

(Figure 5B). Note that the fold activation over control was

not as pronounced as that observed in the G1E system
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Figure 5. ZF-SA Enhances b-Globin Expression in Primary Erythroid Progenitor Cells

(A) Staging of E13.5 fetal liver erythroid cells by Ter119 and CD71 profiling.

(B) mRNAs from FACS-purified R1 cells transduced with ZF constructs were examined by RT-qPCR with primers for the indicated genes. Negative controls

(arbitrarily set to one) (Neg Ctrl) represent cells expressing empty vector. Results were normalized to GAPDH.

n = 3. Error bars denote SD. See also Figure S5.
because, in contrast to the latter, primary erythroblasts are

replete with transcription factors and produce higher levels of

b-globin, even prior to full maturation. Nonetheless, these

results in essence mirrored those from G1E cells in that the

same combinations of ZF fusion proteins were capable of acti-

vating b-globin expression. The effects were specific to the

b-globin locus, as no other erythroid genes examined were

altered in their activities (Figure 5B). Moreover, ZF-SA expres-

sion did not nonspecifically promote erythroid maturation, as

determined by flow cytometry using CD71 and Ter119 surface

markers (Figure S5C). Together, these results show that ZF-SA

fusion constructs can activate b-globin transcription in primary

erythroid cells.

ZF-SA Fusion Protein Induction of b-Globin
Transcription Is LCR Dependent
Targeting of the SA domain to the b-globin locus restores juxta-

position of HS2 with the b-globin gene, Pol II recruitment, and

Pol II Ser5ph, strongly suggesting that transcriptional activation

is due to LCR-b-globin looping. The prediction from these obser-

vations is that alleles lacking the LCR would not respond to

ZF-SA fusion proteins (Figure 6A). Alternatively, if b-globin tran-

scription simply resulted from SA-induced transcription factor

assembly at the b-globin promoter, then ZF-SA should activate

transcription independently of the LCR. This distinction is espe-

cially important in light of the positive effects on b-globin tran-
scription exerted by the expression of P-SA alone. To definitively

distinguish between these possibilities, we examined ZF-SA’s

functions in E13.5 fetal liver erythroblasts derived from mice

that are heterozygous for a deletion of the LCR (DLCR/+) (Bender

et al., 2000). The b-major gene on the DLCR allele is of the D

haplotype, whereas that on the WT allele is of the S haplotype.

We developed an allele-specific qPCR assay that distinguishes

single nucleotide polymorphisms between the transcripts of

these alleles (Figure S6), providing an ideal internally controlled

experimental setup.

Next, we transduced DLCR/+ R1 cells with viral vectors ex-

pressing ZF-SA proteins and exposed them to erythropoietin

for 6 hr to promote erythroid maturation. Allele-specific RT-

qPCR demonstrated that the WT allele (bmaj-S) was activated

in cells expressing L-SA together with P-SA or P-SA alone (Fig-

ure 6B, left). L-SA had little or no activity similar to ZFs lacking SA

that served as negative controls. In striking contrast, the b-major

gene on DLCR allele (bmaj-D) was expressed at low levels and

showed very little response to the P-SA/L-SA or P-SA proteins

(Figure 6B, middle). The effects of ZF fusion protein expression

were essentially the same in the presence or absence of erythro-

poietin and were specific to the b-globin locus, as none of the

other examined erythroid genes were altered in their activities

(Figure S7). The residual signal produced by the D-allele-specific

primers was not due to transcription from the D allele but was

due to the result of cross-hybridization with S allele cDNA. This
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Figure 6. LCR Dependence of b-Globin Induction by ZF-SA Proteins

(A) Experimental concept. The LCR-deleted allele is on the background of the b-major D haplotype, whereas the WT allele is on the background of the b-major

S haplotype.

(B) b-major mRNA levels as measured by allele-specific RT-qPCR in R1 cells from WT/DLCR or DLCR/DLCR fetal livers expressing indicated ZF-SA proteins.

Transcript levels were normalized to GAPDH.

n = 3. Error bars denote SD. See also Figures S6 and S7.
was demonstrated by templatemixing experiments showing that

�10% of the signal produced by the D-allele-specific primers

derived from cross-reactivity with the S allele cDNA (Figure S6).

Indeed, when homozygous (DLCR/DLCR) R1 cells were trans-

duced with P-SA, b-globin activation was close to background,

establishing that the low signal obtained with D-specific primers

in DLCR/WT cells was in fact due to cross-hybridization (Fig-

ure 6B, right). In concert, the results clearly demonstrate that

the activity of ZF-SA proteins is entirely dependent on the pres-

ence of LCR and hence on long-range chromatin looping.

DISCUSSION

Here, we employed a ZF targeting strategy to address critical

questions concerning the higher-order organization of the chro-

matin fiber. Targeting the SA domain of Ldb1 to the endogenous

b-globin locus compensated to a significant extent for the loss of

GATA1, strongly suggesting that Ldb1 serves as an effector of

GATA1 during chromatin loop formation. Forced chromatin

looping by ZF-SA proteins at a native gene locus caused con-

siderable transcriptional activation, indicating that the juxtaposi-

tion of an enhancer with a promoter causally underlies gene

induction.

Expression of P-SA by itself produced effects very similar to

those of P-SA and L-SA coexpression. Several independent

lines of investigation demonstrate that, in P-SA-expressing cells,
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forced loop formation accounts for b-globin activation. First, 3C

experiments clearly showed that tethering the SA domain to the

b-globin promoter fostered genomic contacts that strongly

resembled those induced by GATA1 with regard to both their

spatial configuration and efficiency. Second, SA domain recruit-

ment completely restored several LCR-dependent functions at

the b-globin promoter, including Pol II recruitment, Ser5ph of

Pol II, and H3K4 methylation. Third, targeted deletion of the

LCR dramatically reduced b-globin transcription without dimin-

ishing the amounts of promoter-bound Ldb1 (Song et al.,

2010). Therefore, tethering Ldb1 or its SA domain to the

promoter is not expected to produce such pronounced effects

without an involvement of the LCR. Fourth, P-SA and P-SA/

L-SA induction of b-globin expression was entirely dependent

on the LCR, confirming an underlying looping mechanism. The

ability of P-SA to potently induce loop formation is most likely

explained by its ability to interact with endogenous Ldb1-con-

taining complexes that reside at the LCR even in the absence

of GATA1 (Figure S1A) (Tripic et al., 2009). In contradistinction,

Ldb1 association with the b-globin promoter is entirely GATA1

dependent and hence might represent a critical and rate-limiting

step during chromatin looping and high-level transcription.

The observation that the SA domain is sufficient to induce

long-range chromatin interaction implies that SA of Ldb1 is

a major molecular force tying together anchored chromatin

regions. Importantly, the SA domain can form multimers (Cross



Figure 7. Hypothetical Model Functionally Integrating Chromatin Looping and Transcription Activation

Recruitment of Ldb1 to the b-globin promoter either by ZF proteins or GATA1 promotes LCR promoter looping. Forced chromatin looping by ZF-Ldb1 efficiently

restores preinitiation complex (PIC) assembly, Pol II recruitment, Pol II Ser5ph, and transcription initiation. In the absence of GATA1, diminished recruitment of

P-TEFb and likely additional GATA1 cofactors account for inefficient transcription elongation. Therefore, chromatin looping can trigger transcription initiation and

can occur independently of full transcription elongation.
et al., 2010), allowing for the formation of higher-order

complexes that might serve to stabilize interactions between

distant chromatin fragments. However, the SA-deleted form of

Ldb1 was also active, suggesting that the LID domain is also

capable, albeit with lower efficiency, of recruiting the endoge-

nous Ldb1 complex to promote long-range interactions.

Although it is conceivable that, in the simplest terms, the mere

dimerization of DNA-bound factors should be capable of

inducing chromatin loops, we speculate that multiple contacts

are required to provide the requisite specificities and affinities.

Moreover, the folding of the chromatin fiber can occur in

complex patterns involving simultaneous interactions between

multiple segments to form what are called chromatin hubs.

Simple protein dimers might be insufficient to accommodate

such complex interaction patterns. In agreement, fusion of ZFs

with diverse dimerizering domains (lexA, p65NFkB, and the

Argent dimerization system) or protein modules that can form

multimers, such as the POZdomain of GAGA factor, failed to effi-

ciently activate b-globin expression (W.D., unpublished data).

Thus, Ldb1 might have evolved to promote such interactions

by forming homomultimers and by engaging numerous gene-

specific transcription factors, including the LMO2/TAL1/E2A

complex and GATA1. Indeed, a widely used and evolutionarily

conserved looping function for Ldb1 is suggested by studies in

diverse organisms and cell lineages (Matthews and Visvader,

2003; Morcillo et al., 1997; Thaler et al., 2002).

The cause-effect relationship between chromatin looping and

gene regulation has been unclear. By manipulating the chro-

matin conformation at a native gene locus, we found that juxta-
position of an enhancer with its target gene leads to transcription

activation, indicating that looping is a prerequisite for transcrip-

tion activation. In particular, forced association between the

LCR and the b-globin gene sufficed to exert two functions

ascribed to the LCR, the formation of a preinitiation complex at

the promoter and the generation of early elongating Pol II, as re-

flected in Ser5ph (Sawado et al., 2003; Song et al., 2010). On the

other hand, our observation that ZF-Ldb1 proteins completely

rescued chromatin looping but only partially restored transcrip-

tion elongation agrees with the notion that full transcription is

not required for loop formation (Jing et al., 2008; Mitchell and

Fraser, 2008; Palstra et al., 2008). We speculate that juxtaposi-

tion of the LCR with b-globin promoter increases the concentra-

tion of nuclear regulators at the promoter above a threshold

critical for preinitiation complex formation and early transcription

elongation (see model in Figure 7).

Ldb1 recruitment in GATA1 null cells completely rescued

chromatin looping and transcription initiation but only partially

restored transcription elongation, indicating that GATA1 contrib-

utes additional functions independently of Ldb1 and chromatin

looping. Indeed, both the recruitment of the P-TEFb complex

and its distribution along the gene were impaired in the absence

of GATA1, suggesting GATA1 impacts on P-TEFb regulation at

multiple levels, perhaps via direct interaction (Bottardi et al.,

2011; Elagib et al., 2008) or indirectly via proteins of the bromo-

domain and extra terminal domain (BET) family (Lamonica et al.,

2011). In addition, GATA1 interacts with many other transcription

factors and histone modifiers, the lack of which might account

for inefficient transcription elongation.
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In concert, these results suggest that Ldb1 functions down-

stream of GATA1 rather than in a parallel pathway and highlight

the usefulness of this system to interrogate protein functions

during distinct steps in the transcription cycle. In more general

terms, this work illustrates a novel strategy to establish hierar-

chical orders of transcription factor function. On the background

of a transcription factor deficiency, forced tethering of a potential

cofactor to a chosen gene can be employed to measure its

contribution to defined steps in the transcription cycle, such as

loop formation, Pol II recruitment, Pol II phosphorylation, and

productive transcription elongation. We believe that this

approach is widely applicable for any nuclear factors that can

be knocked down or knocked out.

One key general finding of our study is that a single ZF-Ldb1

protein targeted to the b-globin promoter can induce a chromatin

loop by interacting with endogenous LCR-bound factors. ZFs

have previously been linked to activation domains to success-

fully activate gene expression (Klug, 2010). However, the use

of ZFs to promote interactions with a potent enhancer or LCR

is expected to producemore pronounced transcriptional effects.

Indeed, we are not aware of any single ZF proteins capable of

activating gene transcription by a factor of more than 1,000-

fold. Another advantage of a forced looping approach by a single

ZF construct, especially in the context of therapeutic applica-

tions, is that efficient expression of a single molecule is easier

than coexpression of two factors at matching levels.

Finally, specific chromatin loops can occur at repressed genes

(Jing et al., 2008), and placing an enhancer and promoter on

separate loops can isolate the enhancer to render it inactive

(Ameres et al., 2005; Hou et al., 2008). Thus, in addition to acti-

vating transcription, we envision that forced chromatin looping

could be used to silence gene expression for scientific or thera-

peutic purposes.

EXPERIMENTAL PROCEDURES

Artificial ZF Design

ZFs, each containing six Cys2-His2 ZF domains and targeting 18–19 bp sites

within either the b-major promoter or DNase1 hypersensitive site 2 of the

mouse LCR, were designed and assembled from two-finger units as previ-

ously described (Bartsevich et al., 2003).

Cell Culture

G1E andG1E-ER4 cells were cultured as described (Weiss et al., 1997). Where

indicated, G1E-ER4 cells were treated with 100 nM estradiol (E2) for 21 (3C

assays) or 24 hr (RT-qPCR and ChIP assays) to activate GATA1-ER (indicated

as G1E+GATA1 in figures).

Isolation of Primary Erythroblasts

WT fetal liver erythroid cells were obtained from CD1 mice (Charles River

Laboratories). DLCR/DLCR mice (129 strain) were described (Bender et al.,

2000). To generate DLCR/WT mice, DLCR/DLCR male animals were bred

withWT femalemice (BL6 strain). E13.5 fetal liver cells were harvested, stained

with PE-conjugated anti-CD71 and APC-conjugated anti-Ter119 antibodies,

and sorted by FACS. The R1 (Ter119- and CD71-/low) populations were iso-

lated, infected with desired retrovirus, and cultured for 24 hr in proliferation

medium containing Iscove’s modified Dulbecco’s medium (IMDM) supple-

mented with 15% fetal bovine serum, 1% penicillin-streptomycin, 1% gluta-

mine, 10 ng/ml mIL3, 20 ng/ml m/h IL6, 50 ng/ml mSCF, and 10 ng/ml m/h

FLT3L from Peprotech. Where indicated, cells were induced to differentiate

by culture in IMDM supplemented with 15% fetal bovine serum, 1% peni-
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cillin-streptomycin, 1% glutamine, 50 ug/ml ascorbic acid, 200 ug/ml holo-

transferrin (Sigma), and 2 U/ml Erythropoietin ALFA (Epogen).

3C Assay

The 3C assaywas performed as described (Jing et al., 2008; Vakoc et al., 2005)

with the following modifications. 1 3 107 cells were crosslinked with 1.5%

formaldehyde at room temperature for 10 min, followed by glycine quenching,

cell lysis, BglII digestion, and T4 ligation. 3C ligation products were quantified

in triplicates by quantitative TaqMan real-time PCR. Probes and primers were

designed using Primer Express 2.0 software (Applied Biosystems) and tested

by serial dilution and gel electrophoresis to ensure specific and linear amplifi-

cation (Figures S3B and S3C). Digestion efficiencies were monitored by

SybrGreen qPCR with primer pairs that amplify genomic regions containing

or devoid of BglII digestion sites (Figure S3D). A bacterial artificial chromo-

some (BAC) containing the entire murine b-globin locus of 129 origin

(SourceBioscience, Clone BMQ433I10) was digested with BglII and relegated

to generate random ligation products of BglII fragments (Figure S3A). The DNA

was serially diluted and used to generate a standard curve to which all 3C

products were normalized. The 3C signals at the b-globin locus were further

normalized to those from four intervening regions or, alternatively, that of

a control locus ERCC3, both producing similar results. Probe and primer

sequences are listed in the Extended Experimental Procedures.

ChIP

ChIP was performed as described (Tripic et al., 2009). The following antibodies

were used: pan-Pol II (sc-899, Santa Cruz), CDK9 (sc-484, Santa Cruz), Ser5ph

(MS-134R, Covance), and H3K4me3 (07-473, Millipore), and anti-HA mono-

clonal antibody was clone 12CA5. ChIP qPCR primer sequences are listed

in the Extended Experimental Procedures.

RT-qPCR

RNA was extracted with Trizol (Invitrogen) from 105–106 cells. RNase-free

glycogen (Invitrogen) was added to aid RNA precipitation. Reverse transcrip-

tion reactions were performed with random hexamers using Superscript II

(Invitrogen). cDNA samples were quantified by SybrGreen qPCR. Allele-

specific qPCR was carried out at annealing temperature 62�C (60�C for

conventional qPCR as default setting). Data were normalized to b-actin or

GAPDH, both producing similar results. Primer sequences are listed in the

Extended Experimental Procedures.

Retroviral Infections

Retroviral infections of G1E cells were carried out as described (Tripic et al.,

2009). For isolated primary fetal liver cells, spin-infection condition was modi-

fied to 2,000 rpm at room temperature for 1 hr, and cells were switched to fresh

medium immediately after infection.

Plasmids

Individual ZF protein coding sequences were cloned into MigR1 retroviral

vector with three HA tags and an NLS at their N termini. Full-length Ldb1 or

the SA domain containing amino acids 1–200 of Ldb1 was cloned in frame

C terminal to the ZF. P-DSA was generated by deleting the first 256 amino

acids of Ldb1.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures and

seven figures and can be found with this article online at doi:10.1016/j.cell.

2012.03.051.
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